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Overview:

» In comparison to DSLR cameras, low-quality images are
generally outputted Iin portable mobile devices on account of
their physical limitations.

» The synthesized low-quality images usually have multiple
degradations - low-resolution owing to small camera sensors,
mosaic patterns on account of camera filter array, subpixel
shifts due to camera motion.

» Such degradation usually restrain the performance of single
Image super-resolution methodologies for retrieving high-
resolution image from a single LR image.

» Burst Image super-resolution aims at restoring a photorealistic
HR Image by capturing abundant information from multiple
Images.

Proposed Solution:

» Our framework efficiently merges the image contents among the
multiple burst LR frames In a coherent and effective way,
generating HR outputs with realistic textures and high-frequency
details.

Architecture:
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(a) Feature Alignment

Qualitative Results:
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Adaptive Feature Consolidation Network for Burst Super-Resolution
Nancy Mehta!, Akshay Dudhane?, Subrahmanyam Murala!, Syed Wagas Zamir®, Salman Khan4~>, Fahad Shahbaz Khan?4
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» We propose a simple but effective feature alignment module to = S

align the burst image features with the base frame.

» We utilise encoder-decoder based transformer backbone for ¥

feature extraction to enrich the aligned feature representations.

> An efficient abridged pseudo burst fusion module is utilized toaid |

Inter-frame information exchange and feature consolidation.

» Adaptive group up-sampling Is performed for progressive fusion
and up-scaling of the burst features.
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Quantitative Results:

Methods SyntheticBurst (Real)BurstSR
PSNR SSIM PSNR SSIM
Single Image 36.17 0.91 46.29 0.982
HighRes-net[10] | 37.45 0.92 46.64 0.960
DBSR [5] 40.76 0.96 43.05 0.984
L KR [19] 41.45 0.95 - -
MFIR [7] 41.56 0.96 43.33 0.985
BIPNet [12] 41.93 0.96 43.49 0.985
AFCNet (Ours) 42.21 0.96 43.63 0.966
Ablation Study:

Methods Al A2 A3 A4 A5 A6
Basline V V vV V V'
Alignment W N4
Back-prop N \\; \\; N
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PSNR 36.38 39.92 39.50 41.20 41.80 42.21
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